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A Constructive Description of Ground States
and Gibbs Measures for Ising Model with Two-Step
Interactions on Cayley Tree
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We consider the Ising model with (competing) two-step interactions and spin values
±1, on a Cayley tree of order k ≥ 1. We constructively describe ground states and verify
the Peierls condition for the model. We define notion of a contour for the model on the
Cayley tree. Using a contour argument we show the existence of two different Gibbs
measures.
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1. INTRODUCTION

One of the key problems related to the spin models is the description of the set
of Gibbs measures. This problem has a good connection with the problem of
the description the set of ground states. Because the phase diagram of Gibbs
measures (see (11,20) for details) is close to the phase diagram of the ground states
for sufficiently small temperatures.

The ground states for models on the cubic lattice Zd were studied in many
works (see e.g. (7,9,10,16,17)).

The Ising model, with two values of spin ±1 was considered in (15,21)

and became actively researched in the 1990’s and afterwards (see for example
(1–4,8,13,14,18)).

In the paper we consider an Ising model on a Cayley tree with competing
interactions. The goal of the paper is to study of (periodic and non periodic)
ground states and to verify the Peierls condition for the model. Using the ground
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states we also will define a notion of contours which allows us to develop a contour
argument (Pirogov-Sinai theory) on the Cayley tree. In order to describe an infinite
set of ground states we use a construction, which we will develop here.

In (19) a contour argument for q- component models (with nearest-neighbor
interaction) on Cayley tree was developed. This paper can be considered as a
continuation of the paper(19).

2. DEFINITIONS

2.1. The Cayley Tree

The Cayley tree �k (See (1)) of order k ≥ 1 is an infinite tree, i.e., a graph
without cycles, from each vertex of which exactly k + 1 edges issue. Let �k =
(V, L , i) , where V is the set of vertices of �k, L is the set of edges of �k and i is
the incidence function associating each edge l ∈ L with its endpoints x, y ∈ V . If
i(l) = {x, y}, then x and y are called nearest neighboring vertices, and we write
l = 〈x, y〉.

The distance d(x, y), x, y ∈ V on the Cayley tree is defined by the formula

d(x, y) = min{d|∃x = x0, x1, . . . , xd−1, xd = y ∈ V such that〈x0, x1〉, . . . ,
〈xd−1, xd〉}.

For the fixed x0 ∈ V we set Wn = {x ∈ V | d(x, x0) = n},

Vn = {x ∈ V | d(x, x0) ≤ n}, Ln = {l = 〈x, y〉 ∈ L | x, y ∈ Vn}. (1)

Denote |x | = d(x, x0), x ∈ V .
A collection of the pairs 〈x, x1〉, ..., 〈xd−1, y〉 is called a path from x to y and

we write π (x, y) . We write x < y if the path from x0 to y goes through x.
It is known (see [8]) that there exists a one-to-one correspondence between

the set V of vertices of the Cayley tree of order k ≥ 1 and the group Gk of the free
products of k + 1 cyclic groups {e, ai }, i = 1, . . . , k + 1 of the second order (i.e.
a2

i = e, a−1
i = ai ) with generators a1, a2, . . . , ak+1.

Let us define a graph structure on Gk as follows. Vertices which correspond
to the “words” g, h ∈ Gk are called nearest neighbors if either g = hai or h = ga j

for some i or j. The graph thus defined is a Cayley tree of order k.
For g0 ∈ Gk a left (resp. right) transformation shift on Gk is defined by

Tg0 h = g0h (resp. Tg0 h = hg0, ) ∀h ∈ Gk .

It is easy to see that the set of all left (resp. right) shifts on Gk is isomorphic
to Gk .



A Constructive Description of Ground States 219

2.2. The Model

We consider models where the spin takes values in the set � = {−1, 1} . For
A ⊆ V a spin configuration σA on A is defined as a function x ∈ A → σA(x) ∈ �;
the set of all configurations coincides with �A = �A. We denote � = �V and
σ = σV . Also put −σA = {−σA(x), x ∈ A}. We define a periodic configuration
as a configuration σ ∈ � which is invariant under a subgroup of shifts G∗

k ⊂ Gk

of finite index.
More precisely, a configuration σ ∈ � is called G∗

k−periodic if σ (yx) = σ (x)
for any x ∈ Gk and y ∈ G∗

k .

For a given periodic configuration the index of the subgroup is called the
period of the configuration. A configuration that is invariant with respect to all
shifts is called translational-invariant.

The Hamiltonian of the Ising model with competing interactions has the form

H (σ ) = J1

∑
〈x,y〉

σ (x)σ (y) + J2

∑
x,y∈V :d(x,y)=2

σ (x)σ (y) (2)

where J1, J2 ∈ R are coupling constants and σ ∈ �.

3. GROUND STATES

For a pair of configurations σ and ϕ that coincide almost everywhere, i.e.
everywhere except for a finite number of positions, we consider a relative Hamil-
tonian H (σ, ϕ), the difference between the energies of the configurations σ, ϕ of
the form

H (σ, ϕ) = J1

∑
〈x,y〉

(σ (x)σ (y) − ϕ(x)ϕ(y))

+ J2

∑
x,y∈V :d(x,y)=2

(σ (x)σ (y) − ϕ(x)ϕ(y)), (3)

where J = (J1, J2) ∈ R2 is an arbitrary fixed parameter.
Let M be the set of unit balls with vertices in V. We call the restriction of a

configuration σ to the ball b ∈ M a bounded configuration σb.

Define the energy of a ball b for configuration σ by

U (σb) ≡ U (σb, J ) = 1

2
J1

∑
〈x,y〉,x,y∈b

σ (x)σ (y)

+ J2

∑
x,y∈b: d(x,y)=2

σ (x)σ (y), (4)

where J = (J1, J2) ∈ R2.
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We shall say that two bounded configurations σb and σ ′
b′ belong to the same

class if U (σb) = U (σ ′
b′) and we write σ ′

b′ ∼ σb.

For any set A we denote by |A| the number of elements in A.
Using a combinatorial calculations one can prove the following

Lemma 1. 1) For any configuration σb we have

U (σb) ∈ {U0, U1, . . . , Uk+1},
where

Ui =
(

k + 1

2
− i

)
J1 +

(
k(k + 1)

2
+ 2i(i − k − 1)

)
J2, i = 0, 1, . . . , k + 1.

(5)
2) Let Ci = �i ∪ �−

i , i = 0, . . . , k + 1, where

�i = {σb : σb(cb) = +1, |{x ∈ b \ {cb} : σb(x) = −1}| = i},

�−
i = {−σb = {−σb(x), x ∈ b} : σb ∈ �i },

and cb is the center of the ball b. Then for σb ∈ Ci we haveU (σb) = Ui .

3) The class Ci contains 2(k+1)!
i!(k−i+1)! configurations.

Lemma 2. The relative Hamiltonian (3) has the form

H (σ, ϕ) =
∑
b∈M

(U (σb) − U (ϕb)). (6)

Proof: Note that for any two vertices x and y such that 〈x, y〉 there exist exactly
2 unit balls b, b′ ∈ M such that x, y ∈ b ∩ b′. Also, for any two vertices u and v
such that d(u, v) = 2 there is a unique ball b such that u, v ∈ b. This completes
the proof.

Theorem 3. For any class Ci and for any bounded configuration σb ∈ Ci there
exists a periodic configuration ϕ with period non exceeding 2 such that ϕb′ ∈ Ci

for any b′ ∈ M and ϕb = σb.

Proof: For arbitrary given class Ci and σb ∈ Ci we shall construct configuration
ϕ as follows. Without loss of generality we can take b as the ball with the center
e ∈ Gk (here e is the identity of Gk) i.e b = {e, a1, . . . , ak+1}. Assume σb(e) = +1
(the case σb(e) = −1 is very similar). Denote F = { j ∈ {1, . . . , k + 1} : σb(a j ) =
−1}. Note that |F | = i since σb(e) = +1 and σb ∈ Ci .

Consider two cases:
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Case i = 0. In this case we have σb(x) = 1 for any x ∈ b, so configuration ϕ

coincides with translational-invariant one ϕ+ = {ϕ(x) ≡ +1}. Thus the period of
ϕ is 1.

Case i ≥ 1. Consider

Hi =

x ∈ Gk :

∑
j∈F

ω j (x) − even


 ,

where ω j (x) is the number of a j in x ∈ Gk . Note (see (8)) that Hi is normal
subgroup of index 2 for Gk . By our construction (and assumption σb(e) = +1) we
have σb(x) = +1 for any x ∈ b ∩ Hi and σb(u) = −1 for any u ∈ b ∩ (Gk \ Hi ).�

We continue the bounded configuration σb ∈ Ci to whole lattice �k (which
we denote by ϕ) by

ϕ(x) =
{

1 if x ∈ Hi

−1 if x ∈ Gk \ Hi

So we obtain a periodic configuration ϕ with period 2 (=index of the sub-
group); then by the construction ϕb = σb. Now we shall prove that all restric-
tions ϕb′ , b′ ∈ M of the configuration ϕ belong to Ci . Since Hi is the subgroup
of index 2 in Gk , the quotient group has the form Gk/Hi = {H0,H1} with
the cosets H0 = Hi ,H1 = Gk \ Hi . Let q j (x) = |S1(x) ∩ H j |, j = 0, 1; where
S1(x) = {y ∈ Gk : 〈x, y〉}, the set of all nearest neighbors of x ∈ Gk .

Denote Q(x) = (q0(x), q1(x)). Clearly, q0(x) (resp.q1(x)) is the number of
points y in S1(x) such that ϕ(y) = +1 (resp.ϕ(y) = −1).

We note (see (18)) that for every x ∈ Gk there is a permutation πx of the
coordinates of the vector Q(e) (where e as before is the identity of Gk) such that

πx Q(e) = Q(x).

Moreover Q(x) = Q(e) if x ∈ H0 and Q(x) = (q1(e), q0(e)) if x ∈ H1. Thus for
any b′ ∈ M we have (i) if cb′ ∈ H0 (where as before cb′ is the center of b′) then
ϕb′ = σb up to a rotation; (ii) if cb′ ∈ H1 then ϕb′ = −σb up to a rotation. Since
both σb,−σb ∈ Ci we get ϕb′ ∈ Ci for any b′ ∈ M. The theorem is proved. �

Definition 4. A configuration ϕ is called a ground state for the relative Hamiltonian
H if

U (ϕb) = min{U0, U1, . . . , Uk+1}, for any b ∈ M. (7)

Remarks 1. Usually, more simple and interesting ground states are periodic ones.
In this paper we describe some non periodic ground states as well (cf. (20) chapter
2).
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2. A periodic ground state can be defined differently (see (20)) as a periodic
configuration ϕ such that for any configuration σ that coincides with ϕ almost
everywhere and H (ϕ, σ ) ≤ 0. It is easy to see that if ϕ is a ground state in the
sense of Definition 4, then it satisfies H (ϕ, σ ) ≤ 0. In (10,16) it was proved that
these two definitions (for periodic ground states) are equivalent for Hamiltonians
on Zd . But there is a problem to prove the equivalence of these definitions for
Hamiltonians on the Cayley tree: normally the ratio of the number of boundary sites
to the number of interior sites of a lattices becomes small in the thermodynamic
limit of a large system. For the Cayley tree it does not, since both numbers grow
exponentially like kn . Correspondingly, we make a

Conjecture 1. The conditions (7) and H (a, σ ) ≤ 0 are equivalent.

We set

Ui (J ) = U (σb, J ), if σb ∈ Ci , i = 0, 1, . . . , k + 1.

The quantity Ui (J ) is a linear function of the parameter J ∈ R2. For every
fixed m = 0, 1, . . . , k + 1 we denote

Am = {J ∈ R2 : Um(J ) = min{U0(J ), U1(J ), . . . , Uk+1(J )}}. (8)

It is easy to check that

A0 = {J ∈ R2 : J1 ≤ 0; J1 + 2k J2 ≤ 0};

Am = {J ∈ R2 : J2 ≥ 0; 2(2m − k − 2)J2 ≤ J1 ≤ 2(2m − k)J2},

m = 1, 2, . . . , k; Ak+1 = {J ∈ R2 : J1 ≥ 0; J1 − 2k J2 ≥ 0}
and R2 = ∪k+1

i=0 Ai .

For any Ai , A j , i �= j we have

Ai ∩ A j =




{J : J1 = 2(2i − k)J2, J2 ≥ 0} if j = i + 1, i = 0, 1, . . . , k

(0, 0) if 1 < |i − j | < k + 1

{J : J1 = 0, J2 ≤ 0} if |i − j | = k + 1

(9)

Denote

B = A0 ∩ Ak+1, Bi = Ai ∩ Ai+1, i = 0, . . . , k.

Ã0 = A0 \ (B ∪ B0), Ãk+1 = Ak+1 \ (B ∪ Bk),

Ãi = Ai \ (Bi−1 ∪ Bi ), i = 1, . . . , k.

Fix J ∈ R2 and denote

NJ (σb) = |{ j : σb ∈ C j }|.
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Using (9) one can prove

Lemma 5. For any b ∈ M and σb we have

NJ (σb) =




k + 2 if J = (0, 0)

2 if J ∈
(( ∪k

i=0 Bi

) ∪ B

)
\ {(0, 0)},

1 otherwise

Let GS(H ) be the set of all ground states of the relative Hamiltonian H (see (3)).
For any σ = {σ (x), x ∈ V } ∈ � denote σ = −σ = {−σ (x), x ∈ V }.
Theorem 6. (i) If J = (0, 0) then GS(H ) = �.

(ii) If J ∈ Ãi , i = 0, . . . , k + 1 then

GS(H ) = {
σ (i), σ (i)

}
.

(iii) If J ∈ Bi \ {(0, 0)}, i = 0, . . . , k then

GS(H ) = {
σ (i), σ (i), σ (i+1), σ (i+1)

} ∪ Si ,

where Si contains at least a countable subset of non periodic ground states.
(iv) If J ∈ B \ {(0, 0)}, then

GS(H ) = {
σ (0), σ (0), σ (k+1), σ (k+1)

}
.

Here σ (i), σ (i), i = 0, . . . , k + 1 are periodic ground states such that on any
b ∈ M the bounded configurations σ

(i)
b , σ

(i)
b ∈ Ci , i.e. σ (0), σ (0) are translational -

invariant and σ (i), σ (i), i = 1, . . . , k + 1 are periodic with period 2.

Proof: The assertion (i) is trivial. In each case (ii)-(iv) for a given configuration
σb which makes U (σb) minimal, by Theorem 3 one can construct the periodic
ground states σ (i), σ (i) (with period non exceeding two). For each case the exact
number of such ground state coincides with the number of the configurations σb

which make U (σb) minimal. Thus it remains to prove the existence of the set Si

defined in the case (iii). If J ∈ Bi \ {(0, 0)} then the minimum points of U (σb)
belong to the classes Ci and Ci+1 i.e. σ (i)

b = {σ (i)
b (x), x ∈ b}, σ (i)

b = {−σ
(i)
b (x), x ∈

b} such that

σ
( j)
b (cb) = +1, |{x ∈ b \ {cb} : σ

( j)
b (x) = −1}| = j, j = i, i + 1, b ∈ M. (10)

Thus any ground state ϕ ∈ � must satisfy

ϕb ∈ {
σ

(i)
b , σ

(i)
b , σ

(i+1)
b , σ

(i+1)
b

}
, b ∈ M. (11)

Now we shall construct ground states ϕ ∈ � which satisfy (11).
Note that the configurations σ

(i)
b and σ

(i)
b′ (b, b′ ∈ M) are the same up to a

motion in Gk so we shall omit b. Thus configuration
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σ (i) is the configuration such that on any unit ball b ∈ M the condition (10)
is satisfied.

Suppose two unit balls b and b′ are neighbors, i.e. they have a common edge.
We shall then say that the two bounded configurations σb and σ ′

b′ are compatible
if they coincide on the common edge of the balls b and b′. Denote by B(b) the set
of all neighbor balls of b.

Denote �̃i = {σ (i), σ (i), σ (i+1), σ (i+1)}. For any ω, ν ∈ �̃i denote by
n(ω, ν) ≡ ni (ω, ν) the number of possibilities to set up the configuration ν as
a compatible configuration (with ω) around (i.e on neighboring balls of the ball on
which ω is given ) the configuration ω. Clearly n(ω, ν) ∈ {0, 1, . . . , k + 1}, for
any ω, ν ∈ �̃i i = 0, . . . , k + 1.

Denote

Ni ≡ N(k)
i =



n(σ (i), σ (i)) n(σ (i), σ (i)) n(σ (i), σ (i+1)) n(σ (i), σ (i+1))

n(σ (i), σ (i)) n(σ (i), σ (i)) n(σ (i), σ (i+1)) n(σ (i), σ (i+1))

n(σ (i+1), σ (i)) n(σ (i+1), σ (i)) n(σ (i+1), σ (i+1)) n(σ (i+1), σ (i+1))

n(σ (i+1), σ (i)) n(σ (i+1), σ (i)) n(σ (i+1), σ (i+1)) n(σ (i+1), σ (i+1))


 .

It is easy to see that

N0 =




k + 1 0 k + 1 0

0 k + 1 0 k + 1

k 0 k 1

0 k 1 k


 , Ni =




k − i + 1 i k − i + 1 i

i k − i + 1 i k − i + 1

k − i i + 1 k − i i + 1

i + 1 k − i i + 1 k − i


 ,

i = 1, . . . , k − 1.

Nk =




1 k 0 k

k 1 k 0

0 k + 1 0 k + 1

k + 1 0 k + 1 0


 , Nk+1 =




k + 1 0 0 0

0 k + 1 0 0

0 0 0 k + 1

0 0 k + 1 0


 .

Consider k + 1 sets Qi = {Q}, i = 0, . . . , k of matrices Q = {q(u, v)}u,v∈�̃i

such that

q(u, v) ∈ {0, 1, . . . , n(u, v)},
∑
v∈�̃i

q(u, v) = k + 1,∀u ∈ �̃i ,

q(u, σ (i)) + q(u, σ (i+1)) = n(u, σ (i)), q(u, σ (i)) + q(u, σ (i+1)) =
n(u, σ (i)), i = 0, . . . , k and q(u, v) = 0 if and only if q(v, u) = 0, u, v ∈ �̃i .
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Using matrices Ni we have

Q0 =




Q =




a 0 k − a + 1 0

0 b 0 k − b + 1

c 0 k − c 1

0 d 1 k − d







,

where a, b ∈ {0, 1, . . . , k + 1}; c, d ∈ {0, 1, . . . , k}; a = k + 1 iff c = 0; b = k +
1 iff d = 0.

For i = 1, . . . , k − 1 we have

Qi =




Q =




a1 b1 k − i − a1 + 1 i − b1

b2 a2 i − b2 k − i − a2 + 1

a3 b3 k − i − a3 i − b3 + 1

b4 a4 i − b4 + 1 k − i − a4







,

where a1, a2 ∈ {0, 1, . . . , k − i + 1}; a3, a4 ∈ {0, 1, . . . , k − i}; b1, b2 ∈
{0, . . . , i}; b3, b4 ∈ {0, . . . , i + 1}; a1 = k − i + 1 iff a3 = 0; a2 = k − i + 1 iff
a4 = 0; b1 = 0 iff b2 = 0; b1 = i iff b4 = 0; b2 = i iff b3 = 0; b3 = i + 1 iff
b4 = i + 1.

For i = k we have

Qk =




Q =




1 a 0 k − a

b 1 k − b 0

0 c 0 k − c + 1

d 0 k − d + 1 0







,

here a, b ∈ {0, 1, . . . , k}; c, d ∈ {0, 1, . . . , k + 1}; a = 0 iff b = 0; a = k iff d =
0; b = k iff c = 0; c = k + 1 iff d = k + 1.

For a given ξ ∈ �̃i and Q = {q(u, v)}u,v∈�̃i
∈ Qi we recurrently construct

a ground state ϕQ,ξ by the following way: fix a ball b ∈ M and put on b the
configuration ϕ

Q,ξ

b := ξ. On balls taken from B(b) we set exactly q(ξ, ω) copies
of ω for any ω ∈ �̃i . Thus configurations ϕ

Q,ξ

b′ , b′ ∈ B(b) are defined. Using
these configurations, we define configurations on the balls B(b′) \ {b}, (b′ ∈ B(b))
putting q(ϕQ,ξ

b′ , ν) copies of ν ∈ �̃i \ {ξ} and q(ϕQ,ξ

b′ , ξ ) − 1 copies of ξ which are
compatible with ϕ

Q,ξ

b′ . Further, on the balls B(b′′) \ {b′}, (b′′ ∈ B(b′), b′ ∈ B(b))
we set q(ϕQ,ξ

b′′ , ε) copies of ε ∈ �̃i \ {ϕQ,ξ

b′ } and q(ϕQ,ξ

b′′ , ϕ
Q,ξ

b′ ) − 1 copies of ϕ
Q,ξ

b′

which are compatible with ϕ
Q,ξ

b′′ . Repeating this construction one can obtain a
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ground state ϕQ,ξ such that

ϕ
Q,ξ

b ∈ �̃i , |{b′ ∈ B(b) : ϕ
Q,ξ

b = ω, ϕ
Q,ξ

b′ = ν}| = q(ω, ν),

for any b ∈ M and ω, ν ∈ �̃i .

In general the ground state ϕQ,ξ is non periodic (see example below). It is
easy to see that

ϕQ(i),σ ( j) ≡ σ ( j), ϕQ(i),σ ( j) ≡ σ ( j), j = i, i + 1, i = 0, . . . , k,

where

Q(i) =




k − i + 1 i 0 0

i k − i + 1 0 0

0 0 k − i i + 1

0 0 i + 1 k − i


 . (12)

Now using the ground states ϕQ,ξ we shall construct an infinite set of ground
states by the following way: one can choose ξ �= η, ξ, η ∈ �̃i and Q1, Q2 ∈ Qi

such that for configurations ϕQ1,ξ , ϕQ2,η there are infinitely many b ∈ M on which
ϕ

Q1,ξ

b and ϕ
Q2,η

b′ are compatible for some b′ ∈ B(b). Indeed it is enough to take
ξ �= η such that q1(ξ, η)q2(ξ, η) �= 0 (see example below).

Denote

M1 ≡ Mξη

1 (Q1, Q2) = {b ∈ M : ϕ
Q1,ξ

b

is compatible with ϕ
Q2,η

b′ for some b′ ∈ B(b)};

N1 = {n ∈ {0, 1, ...} : ∃b ∈ M1such that |cb| = n};
V (y) = {z ∈ V : y < z}.

Fix m ∈ N1 and denote

W̃m = {x ∈ Wm : ∃b ∈ M1such that cb = x}.
Consider the configuration

ϕQ1,Q2,ξ,η
m (x) =

{
ϕQ1,ξ (x) if x ∈ Vm ∪ {V (y), y ∈ Wm \ W̃m}
ϕQ2,η(x) if x ∈ V (y), y ∈ W̃m .

Clearly ϕ
Q1,Q2,ξ,η
m , m ∈ N1 is a ground state and the number of such ground

states is infinite, since |N1| = ∞. This completes the proof of the assertion (iii).
The theorem is proved. �
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Remark. The proof of (ii) and (iv) can be obtained by using the above matrices.
Indeed in case (i) �̃i contains just σ (i) and σ (i). Thus Qi contains just matrices
of type Q(i) (see (12)). In case (iv) �̃k+1 = {σ (0), σ (0), σ (k+1), σ (k+1)} and Qk+1

contains the unique matrix

Qk+1 =




k + 1 0 0 0

0 k + 1 0 0

0 0 0 k + 1

0 0 k + 1 0


 .

Consequently,

ϕQk+1,ξ =




ϕ+ if ξ = σ (0)

ϕ− if ξ = σ (0)

ϕ± if ξ = σ (k+1)

ϕ∓ if ξ = σ (k+1)

Here ϕε = {ϕ(x) ≡ ε}, ε = +1,−1 is translational-invariant which coin-
cides with either σ (0) or σ (0). The configuration ϕ± = −ϕ∓ is periodic with respect
to the subgroup G(2)

k = {x ∈ Gk : |x | − even} ⊂ Gk (chess-board) and coincides
with σ (k+1) = −σ (k+1).

Example. Consider k = 2, i = 0, J ∈ B0 \ {(0, 0)}. Take matrices

Q1 =




0 0 3 0

0 1 0 2

1 0 1 1

0 2 1 0


 , Q2 =




1 0 2 0

0 1 0 2

2 0 0 1

0 1 1 1




and ξ = σ (0), η = σ (1). The configurations ϕQ1,ξ , ϕQ2,η and ϕ
Q1,Q2,ξ,η

2 are repre-
sented in figures 1(a), (b), and (c) respectively.

Remark. Note that the way of the description of an infinite number of ground
states used in the proof of (iii) is not a unique. One can use ϕQ,ξ for another way
to describe another infinite set of ground states.
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Fig. 1. Ground states.

4. THE PEIERLS CONDITION

Definition 7. Let GS(H ) be the complete set of all ground states of the relative
Hamiltonian H. A ball b ∈ M is said to be an improper ball of the configuration σ

if σb �= ϕb for any ϕ ∈ GS(H ). The union of the improper balls of a configuration
σ is called the boundary of the configuration and denoted by ∂(σ ).

Definition 8. The relative Hamiltonian H with the set of ground states GS(H )
satisfies the Peierls condition if for any ϕ ∈ GS(H ) and any configuration σ
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coinciding almost everywhere with ϕ,

H (σ, ϕ) ≥ λ|∂(σ )|,
where λ is a positive constant which does not depend on σ , and |∂(σ )| is the
number of unit balls in ∂(σ ).

Theorem 9. If J �= (0, 0) then the Peierls condition is satisfied.

Proof: Denote U = {U0, . . . , Uk+1} (see (5)), U min = min{U0, . . . , Uk+1} and

λ0 = min{U \ {U j : U j = U min}} − U min. (13)

Note that U0 = ... = Uk+1 if and only if J = (0, 0), consequently λ0 > 0 if J �=
(0, 0).

Suppose σ coincides almost everywhere with a ground state ϕ ∈ GS(H ) then
we have U (σb) − U (ϕb) ≥ λ0 for any b ∈ ∂(σ ) since ϕ is a ground state. Thus

H (σ, ϕ) =
∑
b∈M

(U (σb) − U (ϕb)) =
∑

b∈∂(σ )

(U (σb) − U (ϕb)) ≥ λ0|∂(σ )|.

Therefore, the Peierls condition is satisfied for λ = λ0. The theorem is proved. �

Remark. An interesting problem is to describe the set of Gibbs measures which
corresponds to the set GS(H ). We shall study this problem in the next section.
We expect that the structure of the set of periodic Gibbs measures is similar to
the set of all periodic ground states i.e. there is no periodic Gibbs measure which
corresponds to a non periodic ground state (cf. with the same problems in (6,12,20)).
In the Section 5 for parameters J such that the model has only two periodic ground
states we show that when temperature is low enough then there are two periodic
Gibbs measures.

5. CONTOURS AND GIBBS MEASURES

Let � ⊂ V be a finite set, �′ = V \ � and ω� = {ω(x), x ∈ �′}, σ� =
{σ (x), x ∈ �} be given configurations. The energy of the configuration σ� has
the form

H�(σ |ω�) = J1

∑
〈x,y〉

x,y∈�

σ (x)σ (y) + J1

∑
〈x,y〉

x∈�,y∈�′

σ (x)ω(y)

+J2

∑
x,y∈�

d(x,y)=2

σ (x)σ (y) + J2

∑
x∈�,y∈�′
d(x,y)=2

σ (x)ω(y). (14)
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Let ωε
�′ ≡ ε, ε = ±1 be a constant configuration outside �. For a given

ε we extend the configuration σ� inside � to the Cayley tree by the constant
configuration and denote this configuration by σ ε

� and �ε
� the set of all such

configurations.
Now we describe a boundary of the configuration σ ε

�. For the sake of
simplicity we consider only case J ∈ Ã0. In this case by Theorem 6 we have
GS(H ) = {σ (0), σ (0)} = {σ+ ≡ +1, σ− ≡ −1}. Fix +-boundary condition. Put
σn = σ+

Vn
and σn,b = (σn)b. By Definition 7 the boundary of the configuration σn is

∂ ≡ ∂(σn) = {b ∈ Mn+2 : σn,b �= σ+
b or σ−

b },
where Mn = {b ∈ M : b ∩ Vn �= ∅}.

The boundary ∂ contains of 2k + 2 parts

∂+
i = {b ∈ Mn+2 : σn,b ∈ �i }, i = 1, 2, . . . , k + 1;

∂−
i = {b ∈ Mn+2 : σn,b ∈ �−

i }, i = 1, 2, . . . , k + 1,

where �i and �−
i are defined in Lemma 1.

Consider Vn and for a given configuration σn (with “+”-boundary condition)
denote

V −
n ≡ V −

n (σn) = {t ∈ Vn : σn(t) = −1}.
Let Gn = (V −

n , L−
n ) be the graph such that

L−
n = {l = 〈x, y〉 ∈ L : x, y ∈ V −

n }.
It is clear, that for a fixed n the graph Gn contains a finite (= m) of maximal

connected subgraphs Gn
r i.e

Gn = {Gn
1, . . . , Gn

m}, Gn
r = (V −

n,r , L−
n,r ), r = 1, . . . , m.

Here V −
n,r is the set of vertices and L−

n,r the set of edges of Gn
r .

Two edges l1, l2 ∈ L are called nearest neighboring edges if |i(l1) ∩ i(l2)| =
1, and we write 〈l1, l2〉1.

For a given graph G denote by V (G)− the set of vertexes and by E(G)− the
set of edges of G.

Dedge(K ) = {l1 ∈ L \ E(K ) : ∃l2 ∈ E(K )such that 〈l1, l2〉1}
The (finite) sets Dedge(Gn

r ) are called subcontours of the boundary ∂. The set
V −

n,r , r = 1, .., m is called the interior, IntDedge(Gn
r ), of Dedge(Gn

r ). For any two
subcontours T1, T2 the distance dist(T1, T2) is defined by

dist(T1, T2) = min
x∈V (T1)
y∈V (T2)

d(x, y),

where d(x, y) is the distance between x, y ∈ V (see Section 2.1).
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Definition 10. The subcontours T1, T2 are called adjacent if dist(T1, T2) ≤ 2. A
set of subcontours A is called connected if for any two subcontours T1, T2 ∈ A
there is a collection of subcontours T1 = T̃1, T̃2, . . . , T̃l = T2 in the set A such
that for each i = 1, . . . , l − 1 the subcontours T̃i and T̃i+1 are adjacent.

Definition 11. Any maximal connected set (component) of subcontours is called
contour of the set ∂.

The set of edges from a contour γ is denoted by suppγ.

Remark. Note that Definition 11 of contours coincides with the Definition 2 of
(19). In (19) the quantity |suppγ | plays very important role. But in the present paper
instate of |suppγ | we will use the number of improper (see Definition 7) balls of γ .

For a given contour γ we put

impε
i γ = {b ∈ ∂ε

i : b ∩ γ �= ∅}, ε = −1, 1; i = 1, . . . , k + 1;

impεγ = ∪k+1
i=1 impε

i γ, impγ = ∪ε=±1impεγ ;

|γ | = |impγ |, |γ ε
i | = |impε

i γ |, |γi | = |γ +
i | + |γ −

i |.
It is easy to see that the collection of contours α = {γr } generated by the

boundary σn has the following properties
(i) Every contour γ ∈ α lies inside of the set Vn+1;
(ii) For every two contours γ1, γ2 ∈ α we have dist (γ1, γ2) > 2, thus their

supports suppγ1 and suppγ2 are disjoint.
A collection of contours α = {γ } that has the properties (i)-(ii) is called a

configuration of contours. As we have seen, the configuration σn of spin generates
the configuration of contours α = α(σn). The converse assertion is also true.
Indeed, for a given collection of contours {γr }m

r=1 we put σn(x) = −1 for each
x ∈ Intγr , r = 1, . . . , m and σn(x) = +1 for each x ∈ Vn \ ∪m

r=1Intγr .

Let us define a graph structure on M (i.e. on the set of all unit balls of the
Cayley tree) as follows. Two balls b, b′ ∈ M are connected by an edge if they are
neighbors i.e have a common edge. Denote this graph by G(M). Note that the
graph G(M) is a Cayley tree of order k ≥ 1. Here the vertices of this graph are
balls of M. Thus Lemma 1.2 of (5) can be reformulated as following

Lemma 13. Let Ñn,G(x) be the number of connected subgraphs G ′ ⊂ G(M)
with x ∈ V (G ′) and |V (G ′)| = n. Then

Ñn,G(x) ≤ (ek)n.



232 Rozikov

For A ⊂ V denote

B(A) = {b ∈ M : b ⊂ A};
D(A) = {x ∈ V \ A : ∃y ∈ A, such that〈x, y〉};

Dint(A) = {x ∈ A : ∃y ∈ V \ A, such that 〈x, y〉}.
Using the induction over n one can prove

Lemma 14. Let K be a connected subgraph of the Cayley tree �2 of order two,
such that |V (K )| = n, then |D(V (K ))| = n + 2.

For x ∈ V we will write x ∈ γ if x ∈ V (γ ).
Denote Nr (x) = |{γ : x ∈ γ, |γ | = r}|, where as before |γ | = |impγ |.

Lemma 15 (cf. with Lemma 6 in (19)). If k = 2 (i.e. the Cayley tree of order two).
Then

Nr (x) ≤ Const · (4e)2r . (15)

Proof: Denote by Kγ the minimal connected subgraph of �2, which contains a
contour γ. It is easy to see that if γ = {γ1, . . . , γm}, m ≥ 1, (where γi is subcon-
tour) then

B(V (Kγ )) ⊂ impγ ∪ B(Intγ ). (16)

Note that D(Intγ ) as a set contains different points. So we have

|γ | = |D(Intγ )| + |Dint(Intγ )|;
|B(Intγ )| = |Intγ \ Dint(Intγ )| = |Intγ | − |Dint(Intγ )|.

Using Lemma 14 we have|Intγ | = |D(Intγ )| − 2.Consequently,

|B(Intγ )| = |D(Intγ )| − |Dint(Intγ )| − 2

= |γ | − 2|Dint(Intγ )| − 2.

Thus from (16) we have

|B(V (Kγ ))| ≤ 2(|γ | − |Dint(Intγ )| − 1).

Since γ contains m subcontours we have

|Dint(Intγ )| ≥ m. (17)

Hence we get from (17)

|B(V (Kγ ))| ≤ 2(|γ | − m − 1).
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Since γ ⊂ Kγ we get |γ | ≤ |B(Kγ )| ≤ 2(|γ | − m − 1). Hence |γ | ≥ 2m + 2
which implies 1 ≤ m ≤ |γ |−2

2 . A combinatorial calculations show that

Nr (x) ≤ 4
[r/2−1]∑

m=1

(
2r − 2m − 2

r

)
Ñ2r−2m−2,�2 (b(x)), (18)

where [a] is the integer part of a and b(x) is a ball b such that x ∈ b.

Using inequality
(n

r

) ≤ 2n−1, r ≤ n and Lemma 15 from (18) we get (15).
The lemma is proved. �

Following lemma gives a contour representation of Hamiltonian
Lemma 16. The energy Hn(σn) ≡ HVn (σn|ωV ′

n
= +1) (see (14)) has the form

Hn(σn) =
k+1∑
i=1

(Ui − U0)|∂i | + |Mn+2|U0, (19)

where |∂i | = |∂+
i | + |∂−

i |.

Proof: Using equality U (σb) = U (−σb) we have

Hn(σn) =
∑

b∈Mn+2

U (σn,b) =
k+1∑
i=1

Ui |∂i | + (|Mn+2| − |∂|)U0. (20)

Now using equality |∂| = ∑k+1
i=1 |∂i | from (20) we get (19). The lemma is

proved. �

Lemma 17. Assume J ∈ Ã0. Let γ be a fixed contour and

p+(γ ) =
∑

σn :γ∈∂ exp{−βHn(σn)}∑
σ̃n

exp{−βHn(σ̃n)} .

Then

p+(γ ) ≤ exp{−βλ0|γ |}, (21)

where λ0 is defined by formula (13) and β = 1
T , T > 0− temperature.

Proof: Put �γ = {σn : γ ⊂ ∂},�0
γ = {σn : γ ∩ ∂ = ∅} and define a map χγ :

�γ → �0
γ by

χγ (σn)(x) =
{+1 if x ∈ Intγ

σn(x) if x /∈ Intγ

For a given γ the map χγ is one-to-one map. We need to the following
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Lemma 18. For any σn ∈ �Vn and i = 1, . . . , k + 1 we have

|∂i (σn)| = |∂i (χγ (σn))| + |γi |.

Proof: It is easy to see that the map χγ destroys the contour γ and all other
contours are invariant with respect to χγ . This completes the proof. �

Now we shall continue the proof of Lemma 17. By Lemma 16 we have

p+(γ ) =
∑

σn∈�γ
exp{−β

∑k+1
i=1 (Ui − U0)|∂i (σn)|}∑

σ̃n
exp{−β

∑k+1
i=1 (Ui − U0)|∂i (σ̃n)|} ≤

∑
σn∈�γ

exp{−β
∑k+1

i=1 (Ui − U0)|∂i (σn)|}∑
σ̃n∈�0

γ
exp{−β

∑k+1
i=1 (Ui − U0)|∂i (σ̃n)|} =

∑
σn∈�γ

exp{−β
∑k+1

i=1 (Ui − U0)|∂i (σn)|}∑
σ̃n∈�γ

exp{−β
∑k+1

i=1 (Ui − U0)|∂i (χγ (σ̃n))|} (22)

Since J ∈ Ã0 by Theorem 6 we have GS(H ) = {σ+, σ−} hence Ui − U0 ≥
λ0 for any i = 1, . . . , k + 1. Thus using this fact and Lemma 18 from (22) we get
(21). The lemma is proved. �

Using Lemmas 15 and 17 by very similar argument of (19) one can prove

Theorem 19. If J ∈ Ã0 then for all sufficiently large β there are at least two
Gibbs measures for the model (2) on Cayley tree of order two.
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